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Abstract- A computer model of the middle ear, ossicular chain
and eardrum was established using the finite-element method.
A preliminary comparison of the model with measurements
made in human-cadaver ears shows that the model is in
approximate agreement with the form of the middle ear
function.  The computer model will be used for implant design.
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I. INTRODUCTION

Defects of the incus occur in 59% of conductive hearing
loss cases [1].  For efficient restoration of hearing the
defective incus is normally removed and the mechanical link
between the eardrum and inner ear is reconstructed.  The
method used to reconstruct this ossicular chain depends on
the nature of the defect and the remaining healthy anatomy
of the ear.

In cases of incus defects the reconstruction is normally
of the form of a rod, positioned to connect the malleus
handle or eardrum directly to the cochlea oval window.  This
arrangement does not take advantage of the mechanical lever
offered by the intact chain.  A more promising approach to
prosthesis design is to reconstruct the chain along more
physiologically relevant lines.  Mills reported clinical
success with a physiological reconstruction, connecting the
stapes head to the malleus head [2, 3].  The authors have
previously shown that excellent reconstruction of the
ossicular chain can be achieved using a generic incus shape
[4].  In a series of in vitro studies it was shown that secure
attachment of the prosthesis to the stapes and malleus, with
ionomeric cement, could restore hearing within 10 dB of the
original frequency response.  This study attempts to model

these in vitro findings using a finite element computer
model.  The goal of the study is to produce a computer model
that can be used to simulate different forms of attachment to
the prosthesis.

II. METHODOLOGY

The geometry of the model was derived from high-
resolution magnetic resonance micro-imaging of human
cadaver middle-ear structures [5].  The ossicular chain was
immersed in a silicon-oil and the oil imaged to produce
volume outlines of the bones.  Edge detection was used to
trace the outlines and the model constructed using a bottom-
up hierarchy from points to volumes [6].  The element mesh
was automatically generated and the finite-element program
ANSYS5.6 was used for analyzing the model.  The model
discretization is shown in Fig. 1.

The material properties used to construct the model are
shown in Table 1.  Material properties are taken from those
of Beer et al. and Bornitz et al. [8, 9].  The human eardrum
model was generated using a scheme similar to that of
Funnell [7] who defined the curvature of the eardrum using a
normalization factor.  In this model the normalized radius of
curvature=1.28 and the eardrum is anisotropic.  The eardrum
thickness is assumed to be uniform over its area (=68 mm2).

Four-noded triangular shell and tetrahedral solid
elements were used to define the eardrum and ossicles
respectively.  These elements are well suited to modeling
irregular geometry, such as that which results from the
scanning process.

The eardrum was clamped at the annulus and the stapes
footplate restricted to move along the line normal to its
surface.

TABLE I
MATERIAL PROPERTIESa

Pars
Tensa

Pars
Flaccida

Ossicles

Young's modulus, Er (MPa) 85.7x106 45.6x106

Young's modulus, Et (MPa) 48x106 20x106

2x104

Density (kg/m3) 1200 1200 3300

Shell thickness (m) 100x10-6 100x10-6 n/a

Poisson's ratio 0.35 0.43 0.3

Shear modulus 6.2x106 8.5x106 n/a
RMI factorb 0.78 0.29 n/a

aValues were taken from [8, 9]
bBending moment of inertia ratio
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Fig. 1. Two views of the finite-element discretization of the middle-ear.
The eardrum, malleus, incus and stapes are shown.
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  The incus was constrained at its short process and the
malleus constrained at the anterior process.  A pressure load
equivalent to 80 dB sound pressure level (SPL) was
uniformly applied across the surface of the eardrum.  The
cochlear load was not modeled.

III. RESULTS
A. Displacement Shapes

Figs. 2 and 3 show displacement contours within the
model at forcing frequencies of 1 kHz and 9.5 kHz.  Colors
show regions of the structure that have the same amplitude of
displacement.  These plots represent the displacement
response at particular forcing frequencies and are not
necessarily mode shapes of the middle ear model.  Images
were generated between 100 Hz and 10 kHz.  At low
frequency the eardrum vibrates in discrete sections, similar to
the concentrated displacements of Fig. 2.  In the middle
range of frequency the eardrum displacements are generally
larger across the whole surface and the vibrating areas are
more dispersed.  At high frequency there are no concentrated
areas of eardrum displacement and this may correspond to a
loss of efficiency in transmitting sound, Fig. 3.  There is
good agreement between these plots and experimental
patterns observed in cat [10] and human [11] middle ears.

B. Frequency Response

Fig. 4 shows the frequency response of two points within
the finite element (FE) model.  One of the points is on the
base of the stapes footplate.  The other is on the eardrum.
The third curve in Fig. 4 is the average frequency response
measured in five temporal bone samples to a sound stimulus
of 80 dB SPL.  The vertical axis shows peak-to-peak
displacement normalized to the input sound pressure at the
eardrum.

Although the frequency response function varies across the
eardrum surface, a single point lying midway between the tip
of the malleus and the annulus has been chosen to represent
eardrum motion.  Below 1 kHz the eardrum and stapes

responses are reasonably flat, similar to that measured in the
temporal bone study.  With this set of material properties, the
simulated stapes response is considerably less than the
response measured in actual ears.  At about 1.5 kHz, the
response exhibits a resonance that is similar to the first
resonance measured in temporal bones.  Above this peak the
response decreases with frequency.  A second resonance
occurs at about 4 kHz, again at a higher frequency than
measured in temporal bones.

IV. DISCUSSION

Although this is just a preliminary model the form of the
middle ear function is in approximate agreement with that
found in middle ear studies in temporal bones.  Differences
are thought to be due to the modeling parameters used.  This
middle ear model did not consider inhomogeneity in the
thickness of the eardrum, nor was the flexible annulus
modeled.  A better fit of the simulation to experimental data
may be achieved by incorporating ligamental attachments
and the cochlear load.

Eardrum displacement is found to be higher than stapes
displacement, as expected.  The simulated stapes response
matches the eardrum response quite well to up to high
frequency where the responses differ.  This difference
represents poor a loss of efficiency of the eardrum driving
the malleus.

V. CONCLUSION

The model described here can be further used to predict
changes that may occur through modification of the middle
ear structures.  The main parameters that may be investigated
are mass, shape, stiffness and position of the implant.  With a
better understanding of the effects of these parameters on
sound transmission, implant designs could be optimized to
produce transmission characteristics that are seen in the
normal human ear.Fig. 2. Displacement plot at 1 kHz, stimulated by 80 dB SPL.

Fig. 3. Displacement plot at 9.5 kHz, stimulated by 80 dB SPL.
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Fig 4.  Frequency response of the stapes footplate and
eardrum in the finite element model.  The average stapes
footplate displacement measured in five temporal bone
samples is shown for comparison.  Stimulation level was
80 dB SPL  The displacement is normalized by the input
sound pressure at the eardrum.
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